Answers for Dynamical Systems and Chaos, 2 April 2025.

I.

- 1. Fixed points: $x^* = \frac{1 \pm \sqrt{1 + 8r 4r^2}}{2r}$
- 2. The fixed points exist when the terms under the sugarcroot are positive, which determines the bifurcations: $r_{c1} = 1 \frac{1}{2}\sqrt{5}, r_{c2} = 1 + \frac{1}{2}\sqrt{5}$.
- 3. Stability of fixed points: $f'(x) = 2rx 1 \Rightarrow f'(x^*) = \pm \sqrt{1 + 8r 4r^2}$. (+) is unstable, (-) is stable
- 4. Behaviour around $r \simeq 0$: $x^* = \frac{1 \pm \sqrt{1+8r-4r^2}}{2r} \simeq \frac{1 \pm (1+4r)}{2r} = \frac{1}{r} + 2$ or -2. The bifurcation diagram (r, x^*) passes the x^* axes at $x^* = -2$. When $r \to 0^+$, x^* diverges to infinity. When $r \to 0^-$, x^* diverges to minus infinity.
- 5. At $r_{c1} = 1 \frac{1}{2}\sqrt{5}$ there is a saddle node bifurcation. At $r_{c2} = 1 + \frac{1}{2}\sqrt{5}$ there is a saddle node bifurcation.
- 6. At $r_{c1} = 1 \frac{1}{2}\sqrt{5}$ there is a saddle node bifurcation where the 'top' branch is stable, while the 'down' branch going to minus infinity is unstable. At $r_{c2} = 1 + \frac{1}{2}\sqrt{5}$ there is a saddle node bifurcation where the 'top' branch going to plus infinity is unstable, while the 'down' branch is stable.

II.

- 7. $(x^*, y^*) = (\frac{1}{\mu}, \mu).$
- 8. $\lambda(\mu) = \frac{1-\mu^2 \pm \sqrt{1-6\mu^2 + \mu^4}}{2}$. In Strogatz notation: $\tau = 1 \mu^2$, $\Delta = \mu^2$.
- 9. When the expression under the square-root changes sign, the behavior of the fixed point changes, $\mu^2 = 3 + \sqrt{8}$.
- 10. At $\mu^2 = 3 \sqrt{8}$ where the fixed point changes from being an unstable spiral to an unstable node.
- 11. The real part changes sign at $\mu = 1$ which is where the Hopf bifurcation takes place.

III.

- 12. $x^* = x^* + r x^{*2} \Rightarrow x^* = \pm \sqrt{r}.$
- 13. Stability: $f'(x^*) = 1 2x^* = 1 \pm 2\sqrt{r}$. $+\sqrt{r}$ is stable for $0 \le r \le 1$. $-\sqrt{r}$ is unstable for all r.
- 14. $f'(x) = 1 2x = 0 \Rightarrow x_s = \frac{1}{2}$
- 15. $f'(x^* = +\sqrt{r}) = 1 2\sqrt{r} = -1 \Rightarrow r = 1$
- 16. $x_s = \frac{1}{2}$ must be part of a super-stable two cycle (otherwise the derivative cannot be zero). This two-cycle must therefore fulfill (\rightarrow means 'mapped') $\frac{1}{2} \rightarrow \frac{1}{4} + r \rightarrow \frac{1}{4} + r + r (r^2 + \frac{r}{2} + \frac{1}{16}) = \frac{1}{2} \Rightarrow 16r^2 + 5 24r = 0.$

This has solutions $r = \frac{5}{4}$ and $r = \frac{1}{4}$. The first value corresponds to the two cycle $\frac{1}{2} \rightarrow \frac{3}{2} \rightarrow \frac{1}{2}$