I.

Consider the differential equation

- 1. $\sin(x^*) = \pm \sqrt{a}$. They exist for $0 \le a \le 1$.
- 2. From above we find $a_{c1} = 0$ and $a_{c2} = 1$ They are all saddle node bifurcations, in $x^* = 0, x^* = \pi/2, x^* = -\pi/2$.
- 3. $f'(x) = -2\sin(x)\cos(x) = -2\sin(x) \pm \sqrt{1 \sin^2(x)} \Rightarrow f'(x^*) = -2(\pm\sqrt{a}\pm\sqrt{1-a})$. So, For $\pi/2 < x^* < \pi$ (+,-) unstable, for $0 < x^* < \pi/2$ (+,+) stable, for $-\pi/2 < x^* < 0$ (-,+) unstable, $-\pi < x^* < -\pi/2$ (-,-) stable.
- 4. From above, full line: stable fixed point, dashed line: unstable fixed point. Three saddle node bifurcations in $x^* = 0, x^* = \pi/2, x^* = -\pi/2$.
- 5. $x^* = \pi/2$ so $\sin(x) = \pi/2 + \epsilon \approx 1 \epsilon^2/2$ and $a_{c2} = 1$ so $\sqrt{1 \delta} \approx 1 \delta/2 \Rightarrow \epsilon \sim \sqrt{\delta}$.

II.

6. $(x^*, y^*) = (0, 0)$ is a fixed point.

$$J = \left\{ \begin{array}{cc} -2y^2 + 3x^2 & -4xy + b \\ -1 + 2xy & x^2 \end{array} \right\}$$
(1)

From the Jacobian we find $\tau = 0$ and $\Delta = b$ in the fixed point.

- 7. Is marginal because $\tau = 0$. Cannot determine the stability of $(x^*, y^*) = (0, 0)$ from this.
- 8. $\dot{V}(x,y) = 2ax(-2xy^2 x^3 + by) + 2y(-x + x^2y)$. So $\dot{V}(x,y) < 0$ if $a \cdot b = 1$. One solution a = 1/2, b = 2.
- 9. A bifurcation takes place at $b_c = 0$ from eigenvalues $\lambda = \pm \sqrt{-b}$
- 10. $b = -4 \Rightarrow \lambda = \pm 2$. Eigenvectors $(2, -1), \lambda = 2$ and $(2, 1), \lambda = -2$. Fixed point is a saddle point. III.
- 11. $x^* = rx^* + \frac{2}{x^*} \Rightarrow x^* = \pm \sqrt{\frac{2}{1-r}}$ 12. $f'(x_n) = r - \frac{2}{x_n^2} \Rightarrow f'(x^*) = 2r - 1$. Stable if $0 \le r \le 1$.
- 13. $2r 1 = 0 \Rightarrow r_s = \frac{1}{2}$. $x_s = \sqrt{\frac{2}{1 \frac{1}{2}}} = 2$.
- 14. $f^{2}(x_{n}) = r(rx_{n} + \frac{2}{x_{n}}) + \frac{2}{rx_{n} + \frac{2}{x_{n}}} = x_{n} \Rightarrow r(rx_{n} + \frac{2}{x_{n}})^{2} + 2 = x_{n}(rx_{n} + \frac{2}{x_{n}}) \Rightarrow (rx_{n} + \frac{2}{x_{n}})^{2} = x_{n}^{2}.$ With $y = x_{n}^{2} \Rightarrow y = \frac{-4r \pm 4}{2(r^{2}-1)} = \frac{-2r \pm 4}{(r+1)(r-1)} \Rightarrow x_{n} = \pm \sqrt{\frac{-2}{r+1}}, x_{n} = \pm \sqrt{\frac{2}{1-r}}.$
- 15. For r = -3 we get p = 1, q = -1 for the two-cycle. The other solution gives for $r = -3, x_n = \pm \sqrt{\frac{2}{1+3}}$ which are fixed points.