Answers for Dynamical Systems and Chaos, 10 April 2024.

I.

Consider the differential equation

1. $\sin \left(x^{*}\right)= \pm \sqrt{a}$. They exist for $0 \leq a \leq 1$.
2. From above we find $a_{c 1}=0$ and $a_{c 2}=1$ They are all saddle node bifurcations, in $x^{*}=0, x^{*}=$ $\pi / 2, x^{*}=-\pi / 2$.
3. $f^{\prime}(x)=-2 \sin (\mathrm{x}) \cos (\mathrm{x})=-2 \sin (\mathrm{x}) \pm \sqrt{1-\sin ^{2}(\mathrm{x})} \Rightarrow \mathrm{f}^{\prime}\left(\mathrm{x}^{*}\right)=-2(\pm \sqrt{\mathrm{a}} \pm \sqrt{1-\mathrm{a}})$. So, For $\pi / 2<x^{*}<$ $\pi(+,-)$ unstable, for $0<x^{*}<\pi / 2(+,+)$ stable, for $-\pi / 2<x^{*}<0(-,+)$ unstable, $-\pi<x^{*}<-\pi / 2$ $(-,-)$ stable.
4. From above, full line: stable fixed point, dashed line: unstable fixed point. Three saddle node bifurcations in $x^{*}=0, x^{*}=\pi / 2, x^{*}=-\pi / 2$.
5. $x^{*}=\pi / 2$ so $\sin (\mathrm{x})=\pi / 2+\epsilon \approx 1-\epsilon^{2} / 2$ and $a_{c 2}=1$ so $\sqrt{1-\delta} \approx 1-\delta / 2 \Rightarrow \epsilon \sim \sqrt{\delta}$.

II.

6. $\left(x^{*}, y^{*}\right)=(0,0)$ is a fixed point.

$$
J=\left\{\begin{array}{cc}
-2 y^{2}+3 x^{2} & -4 x y+b \tag{1}\\
-1+2 x y & x^{2}
\end{array}\right\}
$$

From the Jacobian we find $\tau=0$ and $\Delta=b$ in the fixed point.
7. Is marginal because $\tau=0$. Cannot determine the stability of $\left(x^{*}, y^{*}\right)=(0,0)$ from this.
8. $\dot{V}(x, y)=2 a x\left(-2 x y^{2}-x^{3}+b y\right)+2 y\left(-x+x^{2} y\right)$. So $\dot{V}(x, y)<0$ if $a \cdot b=1$. One solution $a=1 / 2, b=2$.
9. A bifurcation takes place at $b_{c}=0$ from eigenvalues $\lambda= \pm \sqrt{-b}$
10. $b=-4 \Rightarrow \lambda= \pm 2$. Eigenvectors $(2,-1), \lambda=2$ and $(2,1), \lambda=-2$. Fixed point is a saddle point.

III.

11. $x^{*}=r x^{*}+\frac{2}{x^{*}} \Rightarrow x^{*}= \pm \sqrt{\frac{2}{1-r}}$
12. $f^{\prime}\left(x_{n}\right)=r-\frac{2}{x_{n}^{2}} \Rightarrow f^{\prime}\left(x^{*}\right)=2 r-1$. Stable if $0 \leq r \leq 1$.
13. $2 r-1=0 \Rightarrow r_{s}=\frac{1}{2} . x_{s}=\sqrt{\frac{2}{1-\frac{1}{2}}}=2$.
14. $f^{2}\left(x_{n}\right)=r\left(r x_{n}+\frac{2}{x_{n}}\right)+\frac{2}{r x_{n}+\frac{2}{x_{n}}}=x_{n} \Rightarrow r\left(r x_{n}+\frac{2}{x_{n}}\right)^{2}+2=x_{n}\left(r x_{n}+\frac{2}{x_{n}}\right) \Rightarrow\left(r x_{n}+\frac{2}{x_{n}}\right)^{2}=x_{n}^{2}$. With $y=x_{n}^{2} \Rightarrow y=\frac{-4 r \pm 4}{2\left(r^{2}-1\right)}=\frac{-2 r \pm 4}{(r+1)(r-1)} \Rightarrow x_{n}= \pm \sqrt{\frac{-2}{r+1}}, x_{n}= \pm \sqrt{\frac{2}{1-r}}$.
15. For $r=-3$ we get $p=1, q=-1$ for the two-cycle. The other solution gives for $r=-3, x_{n}= \pm \sqrt{\frac{2}{1+3}}$ which are fixed points.
