I.

- 1. Fixed points: $x^* = 0, \sqrt{1-r}, -\sqrt{1-r}$. The last two exist when $r \leq 1$
- 2. Two new fixed point appear when $r_c = 1$.
- 3. $f'(x) = 1 2x \frac{r}{(1+x)^2}$
- 4. $f'(x^* = 0) = 1 r$, the fixed point becomes unstable for r < 1.

 $f'(x^* = \sqrt{1-r}) = 1 - 2\sqrt{1-r} - \frac{r}{(1+\sqrt{1-r})^2}$ is negative for < 1 and when $r \to 0, f' \to -1$

 $f'(x^* = -\sqrt{1-r}) = 1 + 2\sqrt{1-r} - \frac{r}{(1-\sqrt{1-r})^2}$ is negative for 0 < r < 1 (and $r \to -\infty$ for $r \to 0$). So in this interval the fixed point is stable. $f'(x^* = -\sqrt{1-r})$ is positive and fixed point thus unstable for r < 0.

It is A (super critical) pitchfork bifurcation around $r \approx 1$ and r < 1.

5. The fixed point $x^* = 0$ is stable for r > 1 (full line) and unstable for r < 1 (dotted line). The two other fixed points grow up as a square root for 0 < r < 1 (full line). The 'negative' is unstable for r < 0 (dotted line).

II.

6.

$$J = \left\{ \begin{array}{cc} -a * \cos^2(x) + a * \sin^2(x) - \cos(x)\cos(y) & \sin(x)\sin(y) \\ -\sin(x)\sin(y) & a * \sin^2(y) - a * \cos^2(y) + \cos(x)\cos(y) \end{array} \right\}$$
(1)

- 7. Nullclines: $\dot{x} = 0$ for x = 0, $x = \pi y = \pi x$. $\dot{y} = 0$ for y = 0, $y = \pi$ and y = x
- 8. Five fixed points in the interval: $(x^*, y^*) = (0, 0), (0, \pi), (\pi, \pi), (\pi, 0), (x^*, y^*) = (\pi/2, \pi/2),$
- 9. For $(x^*, y^*) = (0, 0), (0, \pi), (\pi, \pi), (\pi, 0), \lambda = -2, 0$ (i.e. linearly marginal, but are really saddle-points) For $(x^*, y^*) = (\pi/2, \pi/2), \lambda = 1 \pm i$ (i.e. complex unstable)
- 10. The flow circles in clock wise direction around the fixed point $(x^*, y^*) = (\pi/2, \pi/2)$. On x-axis flow goes in negative direction. On y-axis in the positive direction. As $t \to \infty$ the flow will approach a 'square' limit $x \in [0; \pi], y \in [0; \pi]$.
- 11. For $a = 0, \lambda = \pm i$, i.e. it is a (linear) center.

III.

- 12. Fixed points $x^* = 0, \pm \sqrt{\frac{-a}{1+a}}$. The first trivial fixed point exists always, the last two in the interval -1 < a < 0.
- 13. $f'(x_n) = \frac{1-x^2}{(1+x^2)^2} a$

14.
$$f'(x^* = \pm \sqrt{\frac{-a}{1+a}}) = 2a + 2a^2 + 1$$
 and $0 < 2a + 2a^2 + 1 < 1$ if $-1 < a < 0$, therefore stable.

- 15. $f'(x^* = 0) = 1 a = -1$ when $a_p = 2$
- 16. Assume $x_n = \epsilon$ where ϵ is small. Then $f(\epsilon) = \frac{\epsilon}{1+\epsilon^2} 2\epsilon \approx -\epsilon$ and $f(-\epsilon) = -\frac{\epsilon}{1+\epsilon^2} + 2\epsilon \approx \epsilon$ thus a two-cycle.