Dynamical Systems and Chaos 2015 Spring

Homework Solutions, Session 13
March 11, 2015

8 Bifurcations Revisited

8.2 Hopf Bifurcations

8.2.3

Subcritical Hopf bifurcation

Figure 1: 8.2.3. $\mu=1$

Phase Potrait Plotter 2014
Phase Potrait

Figure 2: 8.2.3. $\mu=0$

Phase Potrait Plotter 2014
Phase Potrait

Figure 3: 8.2.3. $\mu=-1$

11 Fractals

11.3 Dimension of Self-Similar Fractals

11.3.8

(b) $r=3$ and $m=8$. Therefore the dimension is $d=\ln 8 / \ln 3$.
(c) The available fraction of area after n removals is $A_{n}=(8 / 9)^{n}$, so the removed area at $(n+1)$-th removal is $r_{n+1}=(1 / 9) A_{n}=(1 / 9)(8 / 9)^{n}$. Therefore, the total removed area is

$$
R=\sum_{n=1}^{\infty} r_{n}=\frac{1}{9} \sum_{n=1}^{\infty}\left(\frac{8}{9}\right)^{n-1}=\frac{1}{9} 9=1
$$

Therefore, the Sierpinski carpet has zero area.

11.4 Box Dimension

11.4 .2

During each partition, the length of the box is reduced by 3-fold and each original box creates 8 new boxes of smaller sizes. Therefore, $\epsilon_{n}=1 / 3^{n}$ and $N_{n}=8^{n}$, and the dimension is $d=$ $\lim _{n \rightarrow \infty} \ln \left(N_{n}\right) / \ln \left(1 / \epsilon_{n}\right)=\ln (8) / \ln (3)$.

