Flows on the Line

2.4 Linear Stability Analysis

Let's consider the non-linear first-order equation

$$
\begin{equation*}
\frac{d x}{d t}=f(x) \tag{1}
\end{equation*}
$$

with x^{*} a fixed point of $f(x)$. Then, if η is a small perturbation, such that $x=x^{*}+\eta$, the Taylor expansion (to second order) of Eq. 1 reads

$$
\begin{equation*}
\frac{d\left(x^{*}+\eta\right)}{d t}=\frac{d \eta}{d t}=f\left(x^{*}\right)+f^{\prime}\left(x^{*}\right) \eta+\frac{1}{2} f^{\prime \prime}\left(x^{*}\right) \eta^{2}+O\left(\eta^{3}\right) . \tag{2}
\end{equation*}
$$

Because $f\left(x^{*}\right)=0$ we have

$$
\begin{equation*}
\dot{\eta} \simeq f^{\prime}\left(x^{*}\right) \eta+\frac{1}{2} f^{\prime \prime}\left(x^{*}\right) \eta^{2} . \tag{3}
\end{equation*}
$$

We now find the solution of equation Eq. (3) neglecting the quadratic term in η, thus

$$
\begin{array}{r}
\int \frac{d \eta}{\eta}=\int f^{\prime}\left(x^{*}\right) d t+c \tag{4}\\
\eta=c_{1} e^{f^{\prime}\left(x^{*}\right) t}
\end{array}
$$

Eq. (4) says that any perturbation close a fixed point will decay or grow exponentially, depending on the sign of $f^{\prime}\left(x^{*}\right)$. A stable solution will always decay to the fixed point, i.e. $f^{\prime}\left(x^{*}\right)<0$. If $f^{\prime}\left(x^{*}\right)=0$, Eq. (4) is non longer valid to assess the stability of the point x^{*} and we need to consider higher orders of the Taylor expansion, that is $\sim f^{n}\left(x^{*}\right) \eta^{n}$, with $f^{n}\left(x^{*}\right) \neq 0$.

2.4.1 $\dot{x}=x(1-x)$

Fixed points are $x=0$ and $x=1$ and

$$
\begin{equation*}
f^{\prime}(x)=1-2 x, \tag{5}
\end{equation*}
$$

then, because $f^{\prime}(0)>0$ and $f^{\prime}(1)<0, x=0$ is unstable and $x=1$ is stable.
2.4.4 $\dot{x}=x^{2}(6-x)$

Fixed points are $x=0$ and $x=6$, and

$$
\begin{equation*}
f^{\prime}(x)=12 x-3 x^{2} \tag{6}
\end{equation*}
$$

then, because $f^{\prime}(0)=0$ and $f^{\prime}(6)<0$, it follows that $x=6$ is stable, but we need to use more information to study the stability of $x=0$, in this case we will use a graphical argument. From Figure 1 we conclude that $x=0$ is a half-stable fixed point.

Figure 1: Stability of $x=0$ for $\dot{x}=x^{2}(6-x)$.

2.4.7 $\dot{x}=a x-x^{3}$

Fixed points depend on the value of a.

- Case (a): $a>0$
- Case (b): $a<0$
- Case (c): $a=0$
with

$$
\begin{equation*}
f^{\prime}(x)=a-3 x^{2} \tag{7}
\end{equation*}
$$

Case (a):
Fixed points are $x=0$ and $x= \pm \sqrt{a}$. Because $f^{\prime}(0)>0$ and $f^{\prime}(\pm \sqrt{a})<0, x=0$ is unstable and $x= \pm \sqrt{a}$ are stable.
Case (b):
Fixed point $x=0(x= \pm \sqrt{a}$ are imaginary roots $)$. In this case $f^{\prime}(0)<0$ and $x=0$ is stable. Case (c):
Fixed point $x=0$. In this case $f^{\prime}(0)=0$, so we use a graphical argument to study the stability of $x=0$. From Figure 2 we conclude that $x=0$ is a stable fixed point.

2.5 Existence and Uniqueness

2.5.3 $\dot{x}=r x+x^{3}$

In this case, $f(x)=r x+x^{3}$ and $f^{\prime}(x)=r+3 x^{2}$ are continuous in \mathbb{R} for all r in \mathbb{R}. Therefore, the solution exist and is unique for any initial condition x_{0}.

Figure 2: Stability of $x=0$ for $\dot{x}=-x^{3}$.

Analytical solution $x(t)$, with $x(0)=x_{0} \neq 0$ and $r>0$:

$$
\begin{array}{r}
\frac{d x}{x\left(r+x^{2}\right)}=d t \\
\int \frac{d x}{x\left(r+x^{2}\right)}=\int d t+c \\
-\frac{1}{2} \ln \left|r+x^{2}\right|+\ln |x|=r t+c_{1} \\
\frac{x}{\sqrt{r+x^{2}}}=e^{c_{1}} e^{r t} \tag{8}\\
\frac{x^{2}}{r+x^{2}}=c_{2} e^{2 r t} \\
x(t)= \pm \sqrt{\frac{r c_{2} e^{r 2 t}}{1-c_{2} e^{2 r t}}}
\end{array}
$$

with $c_{2}=x_{0}^{2} /\left(r+x_{0}^{2}\right)$.
Then, the solution $x(t) \rightarrow \pm \infty$ when $1-x_{0}^{2} /\left(r+x_{0}^{2}\right) e^{2 r t}=0$, this happen for $t=\ln \left(\frac{x_{0}^{2}+r}{x_{0}^{2}}\right) \frac{1}{2 r}$.

2.5.4 $\dot{x}=x^{1 / 3}$ has infinite solutions

In this case, $f(x)=x^{1 / 3}$ is continuous and $f^{\prime}(x)=\frac{1}{3} x^{-2 / 3}$ is discontinuous at $x=0$. Because f is continuous, the solution exist, but we can not ensure that the solution is unique.
Analytical solution $x(t)$ with $x(0)=0$:

$$
\begin{array}{r}
\frac{d x}{x^{1 / 3}}=d t \\
\int \frac{d x}{x^{1 / 3}}=\int d t+c \\
\frac{3}{2} x^{2 / 3}=t+c \tag{9}\\
x= \pm\left[\frac{2}{3}(t+c)\right]^{3 / 2}
\end{array}
$$

The initial condition is satisfied if $c=0$, so $x(t)=\left(\frac{2}{3} t\right)^{3 / 2}$, with $t \geq 0$. On the other hand, the function $x=-\left(\frac{2}{3} t\right)^{3 / 2}$ is also a solution of the initial value problem. Moreover, the function $x=0$ for $t \geq 0$ is yet another solution.
Finally, we can construct a family of solutions, for any arbitrary positive t_{0}, of the form:

$$
x(t)= \begin{cases}0, & \text { if } 0 \leq t<t_{0} \\ \pm\left[\frac{2}{3}\left(t-t_{0}\right)\right]^{3 / 2}, & \text { if } t \geq t_{0}\end{cases}
$$

which are continuous and differentiable (in particular in $t=t_{0}$).

2.6 Impossibility of the Oscillations

2.6.2

Let's consider the first order initial value problem defined by $\dot{x}=f(x)$, with f a continuous function in $[x(t+T), x(t)]$. Let's assume that x is a periodic function of t, such that $x(t+T)=$ $x(t)$, with $T>0$. We want to prove that the only possible periodic function $x(t)$, that is solution of $\dot{x}=f(x)$, is the constant function.
First, we have that the integral

$$
\begin{equation*}
\int_{t}^{t+T} f(x) \frac{d x}{d t} d t=\int_{t}^{t+T}\left(\frac{d x}{d t}\right)^{2} d t \geq 0 \tag{10}
\end{equation*}
$$

which can be proven using the Cauchy-Schwarz Inequality

$$
\begin{equation*}
\left[\int_{a}^{b} h(t) g(t) d t\right]^{2} \leq \int_{a}^{b} h(t)^{2} d x \int_{a}^{b} g(t)^{2} d t \tag{11}
\end{equation*}
$$

taking $h(t)=d x / d t, g(t)=1, a=t$ and $b=t+T$. Because x is periodic in $[t, t+T]$ it follows that $d x / d t$ is periodic in $[t, t+T]$, and furthermore $0 \leq\left[\int_{t}^{t+T} \frac{d x}{d t} d t\right]^{2}=\left[\int_{a}^{b} h(t) g(t) d t\right]^{2}$. Thus, Eq. (11) transforms in

$$
\begin{equation*}
0 \leq \int_{a}^{b} h(t)^{2} d x \int_{a}^{b} g(t)^{2} d t=(b-a) \int_{a}^{b} h(t)^{2} d x \tag{12}
\end{equation*}
$$

where we used that $\int_{a}^{b} g(t)^{2} d t=\int_{a}^{b} 1 d t=b-a=T$.
Going back to the integral of Eq. (10)

$$
\begin{equation*}
\int_{t}^{t+T} f(x) \frac{d x}{d t} d t=\int_{x(t)}^{x(t+T)} f(x) d x=0 \tag{13}
\end{equation*}
$$

because $x(t)=x(t+T)$.
Finally, we have that

$$
\begin{equation*}
0=\int_{x(t)}^{x(t+T)} f(x) d x=\int_{t}^{t+T} f(x) \frac{d x}{d t} d t=\int_{t}^{t+T}\left(\frac{d x}{d t}\right)^{2} d t \geq 0 \tag{14}
\end{equation*}
$$

which will be only valid when $\int_{t}^{t+T}\left(\frac{d x}{d t}\right)^{2} d t=0$ if and only if $d x / d t=0$, and thus x is necessarily a constant function of t.

2.7 Potentials

2.7.6

The potential, V, satisfies

$$
\begin{equation*}
-\frac{d V}{d x}=r+x-x^{3} \tag{15}
\end{equation*}
$$

integrating this equations, and furthermore assuming the constant of integration $c=0$, we obtain

$$
\begin{equation*}
V(x)=-r x-\frac{1}{2} x^{2}+\frac{1}{4} x^{4} \tag{16}
\end{equation*}
$$

The fixed points are the solution of $0=r+x-x^{3}$, which depends on the value of r. The discriminant of this cubic equation is $\Delta=r^{2} / 4-1 / 27$, the we have two cases:

- $\Delta<0$: 3 fixed points.
- $\Delta \geq 0: 1$ fixed point.

Figure 3: Case $\Delta<0$ with $r=1 / 4$. Left panel: Potential $V(x)$. Right panel: \dot{x}. The locals minimum of the potential correspond to the stable fixed points, while the local maximum corresponds to the unstable fixed point.

Figure 4: Case $\Delta>0$ with $r=1$. Left panel: Potential $V(x)$. Right panel: \dot{x}. The locals minimum of the potential correspond to the stable fixed points, while the local maximum corresponds to the unstable fixed point.

