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Flows on the Line

2.4 Linear Stability Analysis

Let’s consider the non-linear first-order equation

dx

dt
= f(x) (1)

with x∗ a fixed point of f(x). Then, if η is a small perturbation, such that x = x∗ + η, the
Taylor expansion (to second order) of Eq. 1 reads

d(x∗ + η)

dt
=
dη

dt
= f(x∗) + f ′(x∗)η +

1

2
f ′′(x∗)η2 +O(η3). (2)

Because f(x∗) = 0 we have

η̇ ' f ′(x∗)η +
1

2
f ′′(x∗)η2. (3)

We now find the solution of equation Eq. (3) neglecting the quadratic term in η, thus∫
dη

η
=

∫
f ′(x∗)dt+ c

η = c1e
f ′(x∗)t

(4)

Eq. (4) says that any perturbation close a fixed point will decay or grow exponentially, de-
pending on the sign of f ′(x∗). A stable solution will always decay to the fixed point, i.e.
f ′(x∗) < 0. If f ′(x∗) = 0, Eq. (4) is non longer valid to assess the stability of the point x∗

and we need to consider higher orders of the Taylor expansion, that is ∼ fn(x∗)ηn, with
fn(x∗) 6= 0.

2.4.1 ẋ = x(1− x)

Fixed points are x = 0 and x = 1 and

f ′(x) = 1− 2x, (5)

then, because f ′(0) > 0 and f ′(1) < 0, x = 0 is unstable and x = 1 is stable.

2.4.4 ẋ = x2(6− x)

Fixed points are x = 0 and x = 6, and

f ′(x) = 12x− 3x2, (6)

then, because f ′(0) = 0 and f ′(6) < 0, it follows that x = 6 is stable, but we need to use more
information to study the stability of x = 0, in this case we will use a graphical argument.
From Figure 1 we conclude that x = 0 is a half-stable fixed point.
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Figure 1: Stability of x = 0 for ẋ = x2(6− x).

2.4.7 ẋ = ax− x3

Fixed points depend on the value of a.

• Case (a): a > 0

• Case (b): a < 0

• Case (c): a = 0

with

f ′(x) = a− 3x2, (7)

Case (a):

Fixed points are x = 0 and x = ±√a. Because f ′(0) > 0 and f ′(±√a) < 0, x = 0 is unstable
and x = ±√a are stable.

Case (b):

Fixed point x = 0 (x = ±√a are imaginary roots). In this case f ′(0) < 0 and x = 0 is stable.

Case (c):

Fixed point x = 0. In this case f ′(0) = 0, so we use a graphical argument to study the
stability of x = 0. From Figure 2 we conclude that x = 0 is a stable fixed point.

2.5 Existence and Uniqueness

2.5.3 ẋ = rx+ x3

In this case, f(x) = rx+x3 and f ′(x) = r+3x2 are continuous in R for all r in R. Therefore,
the solution exist and is unique for any initial condition x0.
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ẋ

Figure 2: Stability of x = 0 for ẋ = −x3.

Analytical solution x(t), with x(0) = x0 6= 0 and r > 0:

dx

x(r + x2)
= dt∫

dx

x(r + x2)
=

∫
dt+ c

−1

2
ln |r + x2|+ ln |x| = rt+ c1

x√
r + x2

= ec1ert

x2

r + x2
= c2e

2rt

x(t) = ±
√

rc2er2t

1− c2e2rt

(8)

with c2 = x20/(r + x20).

Then, the solution x(t)→ ±∞ when 1−x20/(r+x20)e
2rt = 0, this happen for t = ln

(
x2
0+r

x2
0

)
1
2r

.

2.5.4 ẋ = x1/3 has infinite solutions

In this case, f(x) = x1/3 is continuous and f ′(x) = 1
3
x−2/3 is discontinuous at x = 0. Because

f is continuous, the solution exist, but we can not ensure that the solution is unique.

Analytical solution x(t) with x(0) = 0:
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dx

x1/3
= dt∫

dx

x1/3
=

∫
dt+ c

3

2
x2/3 = t+ c

x = ±
[

2

3
(t+ c)

]3/2
(9)

The initial condition is satisfied if c = 0, so x(t) =
(
2
3
t
)3/2

, with t ≥ 0. On the other hand,

the function x = −
(
2
3
t
)3/2

is also a solution of the initial value problem. Moreover, the
function x = 0 for t ≥ 0 is yet another solution.

Finally, we can construct a family of solutions, for any arbitrary positive t0, of the form:

x(t) =

{
0, if 0 ≤ t < t0

±[2
3
(t− t0)]3/2, if t ≥ t0

which are continuous and differentiable (in particular in t = t0).

2.6 Impossibility of the Oscillations

2.6.2

Let’s consider the first order initial value problem defined by ẋ = f(x), with f a continuous
function in [x(t+T ), x(t)]. Let’s assume that x is a periodic function of t, such that x(t+T ) =
x(t), with T > 0. We want to prove that the only possible periodic function x(t), that is
solution of ẋ = f(x), is the constant function.

First, we have that the integral∫ t+T

t

f(x)
dx

dt
dt =

∫ t+T

t

(
dx

dt

)2

dt ≥ 0, (10)

which can be proven using the Cauchy-Schwarz Inequality

[∫ b

a

h(t)g(t)dt

]2
≤
∫ b

a

h(t)2dx

∫ b

a

g(t)2dt (11)

taking h(t) = dx/dt, g(t) = 1, a = t and b = t+T . Because x is periodic in [t, t+T ] it follows

that dx/dt is periodic in [t, t+T ], and furthermore 0 ≤ [
∫ t+T

t
dx
dt
dt]2 = [

∫ b

a
h(t)g(t)dt]2. Thus,

Eq. (11) transforms in
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0 ≤
∫ b

a

h(t)2dx

∫ b

a

g(t)2dt = (b− a)

∫ b

a

h(t)2dx (12)

where we used that
∫ b

a
g(t)2dt =

∫ b

a
1dt = b− a = T .

Going back to the integral of Eq. (10)∫ t+T

t

f(x)
dx

dt
dt =

∫ x(t+T )

x(t)

f(x)dx = 0, (13)

because x(t) = x(t+ T ).

Finally, we have that

0 =

∫ x(t+T )

x(t)

f(x)dx =

∫ t+T

t

f(x)
dx

dt
dt =

∫ t+T

t

(
dx

dt

)2

dt ≥ 0 (14)

which will be only valid when
∫ t+T

t

(
dx
dt

)2
dt = 0 if and only if dx/dt = 0, and thus x is

necessarily a constant function of t.

2.7 Potentials

2.7.6

The potential, V , satisfies

− dV

dx
= r + x− x3, (15)

integrating this equations, and furthermore assuming the constant of integration c = 0, we
obtain

V (x) = −rx− 1

2
x2 +

1

4
x4 (16)

The fixed points are the solution of 0 = r + x − x3, which depends on the value of r. The
discriminant of this cubic equation is ∆ = r2/4− 1/27, the we have two cases:

• ∆ < 0: 3 fixed points.

• ∆ ≥ 0: 1 fixed point.
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Figure 3: Case ∆ < 0 with r = 1/4. Left panel: Potential V (x). Right panel: ẋ. The locals
minimum of the potential correspond to the stable fixed points, while the local maximum
corresponds to the unstable fixed point.
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ẋ

Figure 4: Case ∆ > 0 with r = 1. Left panel: Potential V (x). Right panel: ẋ. The locals
minimum of the potential correspond to the stable fixed points, while the local maximum
corresponds to the unstable fixed point.
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