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Flows on the Line

2.1 A Geometric Way of Thinking
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Figure 1: Plot of ẋ = sinx. The red circles are the unstable fixed points. The blue circles
are the stable fixed points. The green arrows indicate the velocity-field direction between the
fixed points.

2.1.1 Fixed points

ẋ = sinx = 0→ x = kπ, k ∈ Z (1)

2.1.2 Greatest velocity to the right

sinx = 1→ x = 2kπ +
π

2
, k ∈ Z (2)

2.1.3 Acceleration

Flow acceleration as a function of x

ẍ = (cosx)ẋ = cosx sinx =
1

2
sin(2x) (3)

Points where the flow has a maximum positive acceleration

1

2
sin(2x) =

1

2
→ x = kπ +

π

4
, k ∈ Z (4)
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2.1.4 Analytical solution x(t)

Step 0: Write cscx+ cotx = cot
x

2
. Using the following two properties

sinx = 2 sin
x

2
cos

x

2
(5)

and
cosx = 2 cos2

x

2
− 1 = 1− 2 sin2 x

2
, (6)

we then have

cscx+ cotx =
1

sinx
+

cosx

sinx
=

2 cos2(x/2)

2 sin(x/2) cos(x/2)
= cot

x

2
. (7)

Step1: Use this result and replace it in the expression for the time t,

t = ln

∣∣∣∣cscx0 + cotx0
cscx+ cotx

∣∣∣∣ = ln

∣∣∣∣cot (x0/2)

cot(x/2)

∣∣∣∣ = ln

∣∣∣∣ tan(x/2)

tan (x0/2)

∣∣∣∣ (8)

where we are always assuming that x0 6= kπ, k ∈ Z, i.e. the fixed points of ẋ = sinx. Taking
the exponential to both sides we obtain

tan
x

2
= et tan

x0
2
. (9)

Finally,

x(t) = 2 tan−1
(

et tan
x0
2

)
(10)

Now, setting x0 = π
4

we obtain

tan
x0
2

=
1

cscx0 + cotx0
=

1√
2 + 1

(11)

x = 2 tan−1
(

et

1 +
√

2

)
(12)

2.2 Fixed points and stability

2.2.1 ẋ = 4x2 − 16

The fixed points are: x = −2, stable and x = 2, unstable.
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ẋ = 4x2 − 16

−2 −1 0 1 2

x

−5

−4

−3

−2

−1

0

1

ẋ
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Figure 2: Plots of the different functions ẋ = f(x). The red circles are the unstable fixed
points. The blue circles are the stable fixed points. The green arrows indicate the velocity-
field direction between the fixed points.

Analytical solution x(t) for x 6= ±2:

dx

dt
= 4x2 − 16∫

dx

4x2 − 16
=

∫
dt+ c

(13)
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1

4

∫
dx

x− 2
− 1

4

∫
dx

x+ 2
= 4t+ c

ln

∣∣∣∣x− 2

x+ 2

∣∣∣∣ = 16t+ c

x− 2

x+ 2
= e16tec = Ce16t.

(14)

Thus, x(t) can be obtaining by

x− 2 = (x+ 2)Ce16t

x(1− Ce16t) = 2(1 + Ce16t)

x = 2
1 + Ce16t

1− Ce16t

(15)

Using the initial value x(t = 0) = x0, we determine the value of constant C,

x0 − 2

x0 + 2
= C. (16)

2.2.2 ẋ = 1− x14

The fixed points are: x = −1, unstable and x = 1, stable. Note that the equation 1 − x14
has 14 roots, but only 2 are real. A general expression for the roots, xf , is given by

xf = eiπn/7 for n = 0, 1, . . . , 13 (17)

where for n = 0 and n = 7 we obtain the values 1 and −1, respectively.

No analytic solution for x(t).

2.2.3 ẋ = x− x3

The fixed points are: x = −1, 1, stable and x = 0, unstable.

Analytical solution x(t) for x 6= ±1, 0:
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dx

dt
= x− x3

dx

x− x3 = dt∫ (
1

x
+

1

2

1

1− x −
1

2

1

1 + x

)
dx =

∫
dt+ c

ln |x| − 1

2
ln |x− 1| − 1

2
ln |x+ 1| = ln

|x|√
|x2 − 1|

= t+ c

x√
|x2 − 1|

= etec

x2

x2 − 1
= Ce2t

x2 = (x2 − 1)Ce2t

x2(−1 + Ce2t) = Ce2t

x = ±
√

Ce2t

Ce2t − 1
.

(18)

Defining C1 = 1/C we have

x = ± et√
e2t − C1

. (19)

The constant C1 can be determined from the initial condition x(t = 0) = x0, then

C1 =
x20 − 1

x20
(20)

2.2.4 ẋ = e−x sinx

The fixed points are: x = 2kπ, unstable and x = (2k + 1)π, stable, with k ∈ Z.

No analytic solution for x(t).

2.2.5 ẋ = 1 + 1
2 cosx

No fixed points.

Analytical solution x(t). We first use the following property

1

1 + tan2 x
= cos2 x, (21)

then, defining u = tanx/2 we have
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1 +
1

2
cosx =

1

2
+ cos2

x

2
=

1

2
+

1

1 + u2
(22)

dx =
2

1 + u2
du (23)

using this substitution, the equation reads as follows

dx

dt
= 1 +

1

2
cosx

dx

1 + (1/2) cosx
= dt

1

1/2 + 1/ (1 + u2)

2

1 + u2
du = dt∫

4du

u2 + 3
=

∫
dt+ c

4

3

∫
du

(u/
√

3)2 + 1
= t+ c

4√
3

tan−1(u/
√

3) = t+ c

u =
√

3 tan

(√
3

4
t+ c1

)

tanx/2 =
√

3 tan

√
3

4
t+ c1

x = 2 tan−1

(
√

3 tan

(√
3

4
t+ c1

))

(24)

The constant c1 can be determined from the initial condition x(t = 0) = x0, then

c1 = tan−1
(

1√
3

tan
x0
2

)
. (25)

2.2.6 ẋ = 1− 2 cosx

The fixed points are: x = 2kπ + π/3, unstable and x = 2kπ− π/3, stable, with k ∈ Z. Once
again we define tanx/2 = u which gives:

cos(x) =
1− u2
1 + u2

dx = 2
du

1 + u2
. (26)
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dx

1− 2 cos(x)
= dt

2

3u2 − 1
du = dt

2

∫
du

(u
√

3)2 − 1
=

∫
dt+ c1

(27)

Now, let’s define s =
√

3u, then u = 1/
√

3s and du = ds/
√

3, it follows that

2√
3

[∫
ds

s− 1
−
∫

ds

s+ 1

]
= t+ c1

1√
3

[ln(s− 1)− ln(s+ 1)] = t+ c1.

(28)

Solving for u leads to

1√
3

ln

∣∣∣∣∣u− 1/
√

3

u+ 1/
√

3

∣∣∣∣∣ = t+ c1

u− 1/
√

3

u+ 1/
√

3
= Ce

√
3t

u =
1√
3

1 + Ce
√
3t

1− Ce
√
3t

x = 2 tan−1

(
1√
3

1 + Ce
√
3t

1− Ce
√
3t

)
(29)

The constant C can be determined from the initial condition x(t = 0) = x0, then

C =
tanx0/2− 1/

√
3

tanx0/2 + 1/
√

3
. (30)

2.2.7 ẋ = ex − cosx

By looking at the equation we find that x = 0 is a fixed point, solution of the equation
ex − cos(x) = 0. Furthermore x = 0 is an unstable point (see Figure 1, bottom panel.)

This equation has not analytical solution for its roots. However, there are different numerical
methods that could be used to estimate the value of the roots. For instance, by carefully
looking at the plot, we can identify some of the intervals where these roots are bounded, and
then apply a simple bisection algorithm.

No analytic solution for x(t).
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2.2.11 Analytical solution for a charging capacitor

The equation for the charging capacitor reads

Q̇ =
V0
R
− Q

RC
, (31)

which can be rearranged in terms of the constants a = −1/RC and b = V0C as follows

Q̇ = a(Q− b). (32)

∫
Q

Q− b = a

∫
dt+ c

ln |Q− b| = at+ c1

Q = b+ eatec1

Q = V0C + c2e
−t/RC

(33)

The initial condition is such that Q(t = 0) = 0, then the constant c2 = −V0C, and the
solution reads

Q = V0C
(
1− e−t/RC

)
(34)

2.3 Population Growth
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Figure 3: Left panel: Plot of ẋ for a = k1 = k−1 = 1. The red circles are the unstable fixed
points. The blue circles are the stable fixed points. Right panel: Plot of x(t) for different
initial conditions x0.
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ẋ = k1ax− k−1x2 (35)

Fixed points are x = 0, unstable, and x = a k1
k−1

, stable.

dx

−k−1(x− k1a
k−1

)x
= dt∫

dx

(x− k1a
k−1

)x
= −k−1t+ c

−k−1
k1a

lnx+
k−1
k1a

ln(x− k1a

k−1
) = −k−1t+ c

x− k1a
k−1

x
= e−k1at+c

x− k1a

k−1
= xe−k1at+c

x(1− e−k1at+c) =
k1a

k−1

(36)

The analytical solution is x(t) =
k1a

k−1

1

(1− c1e−k1at)
, with c1 = 1− k1a/k−1

x0
.
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