Dynamical Systems and Chaos 2015 Spring

Homework Solutions, Session 1

February 4, 2015

2 Flows on the Line

2.1 A Geometric Way of Thinking
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Figure 1: 2.1.1
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Note that
. . r T
sinx = 2sin — cos —
2 2
and . .
cosx = 2 cos® 5~ 1=1—2sin? 5
We have
ot 1 4 cos 2 cos?(z/2) e
cscx + cotx = = = cot =
sinz  sinz  2sin(x/2) cos(z/2) 2
Therefore
b Iy | S5C %0 + cot g cot(zg/2) tan(z/2)
= 1n = =
cscx + cotx cot(x/2) tan(zo/2)

We then need to discuss the sign of the term tan(x/2)/ tan(zo/2).

o If zyg € (2km, 2k + 1)m), k€ Z
It can be shown that V¢ > 0,z(t) € (o, (2k + 1)m). Therefore x¢/2,2/2 € (km, (k+ 1/2)7)
and tan(z(/2), tan(z/2) > 0.

o If zy € ((2k — 1)m, 2km), k € Z
It can be shown that V¢ > 0,x(t) € ((2k — 1)m, x0). Therefore x¢/2,2/2 € ((k — 1/2)7, kn)
and tan(zo/2), tan(x/2) < 0.

We then have tan(x/2)/tan(zo/2) > 0. Hence,

tan r_ e’ tan ll
2 2
—z = 2tan"! (et tan %) + 2km, where zp € ((2k — 1), (2k + 1)7)

It is worthy noticing that when z¢y = km, k € Z, the system is already in the fix point. Therefore
x(t) = xo = k.
Especially, when xzg = 7/4, we have k = 0 and
ZTo 1 1

tan — = =
) cscxo +cotwyg /241

Then,

ol
r=2tan"!
<1+\/§)

2.2 Fixed Points and Stability
2.2.1

e Fix points and stability
x = —2, Stable; x = 2, Unstable.
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Figure 2: 2.2.1

e Analytical solution
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= 16t
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— If 9 > 2, we have > 2 and (z — 2)/(x + 2), (xg — 2)/(x0 +2) > 0;
—If —2<x9<2, wehave =2 <z < 2and (z —2)/(z+2), (xo — 2)/(zo + 2) < 0;
— If 29 < =2, we have z < —2 and (x — 2)/(z + 2), (xo — 2)/(zo + 2) > 0.

Therefore, no matter what the initial value is, the term (z — 2)(xzo + 2)/(x 4+ 2)(zo — 2) is
positive. Therefore

33_2x0+2:e16t_>x:2 1+$0_2616t 1_330_261&
T+ 2x5—2 To+ 2 To+ 2
It is worth noticing that when xzy = —2, the system is in the fix point. Therefore x(t) = xg =

—2,t > 0. From now on, we will ignore the cases where the initial state is the fix point.



2.2.2
e Fix points and stability
x = —1, Unstable; x = 1, Stable.
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Figure 3: 2.2.2
e Analytical solution
Note that the solutions of 1 — 2% = 0 is = ¢"™/7,n = 0,1,...,13. Therefore we have

dz
ar _q_ 4
dat v

13 djr =dt
[L.—(exp{inm/7} — x)

13
Ay,

ngo exp{inm/T} — xdgc = dt

13 '
— Z A,dln ’x — e(””r/ﬂ‘ =dt
n=0
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13
—d H In ‘x — glin/T7)
n=0
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13 ) A, 13 )
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where A,, are coefficients. The form is very complicated and it is not necessary to proceed.

2.2.3

e Fix points and stability



x = —1, Stable; x = 0, Unstable; z = 1, Stable.
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Figure 4: 2.2.3
e Analytical solution
d
d—j =z —2°
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— If |zo| < 1, we have |z| < 1. In addition, x and x¢ should have the same sign. So

a3 % ea3 /(1 - a3)

dln =dt

sgnxg

2t
— = e ==
1—a? " 1-up 1+ eag/(1 - af)

— If |zg| > 1, we have |z| > 1. = and z( should have the same sign, too. So

x? 7y o e?ag/(xg — 1)
= e — r =
22-1 23-1 e2tx?/(x2 —1)—1

sgnrg



2.2.4
e Fix points and stability
x = 2km, Unstable; x = (2k 4+ 1)m, Stable. k € Z
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Figure 5: 2.2.4

e No analytical solution

2.2.5

e No fix points
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Figure 6: 2.2.5

e Analytical solution



Let u = tan(x/2), and we have x = 2arctanu + 2km, k € Z. Note that

1 1 sx 1 1
g =g test s =3t s
and )
dx = du
14+ u?
and we have
T 5 COST
_de
1+ (1/2)cosz
1 2
du =dt
12+1/0+u2)T+uz "
4d
dw
u? 43
1 Jarctan L = dr
—darctan — =
V3 V3
i (arctan L arctan uO) =
V3 V3 V3
\/g (')
uw=+/3tan | —¢ + arctan —
(4 V3

where ug = tan(zo/2). Note that when converting u back to x, we are not able to determine
the number of period (k) directly.

2.2.6

e Fix points and stability
x = 2kw + 7/3, Unstable; x = 2km — 7/3, Stable. k € Z
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Figure 7: 2.2.6

e Analytical solution

Similar to 2.2.5, define u = tan(z/2) and eventually we have

2
T el VAVE B
V3 u+1/V3
u—l/\/§ _ uo—l/\/§ oVt
u+1/vV3|  |uo+1/V3
— If wg € (2km — 7/3,2km +7/3),k € Z, we have x € (2km — 7/3,2¢) and (u — 1/v/3)(u +
1/V3), (uo — 1/v/3)(uo +1/v3) < 0.
— If xg € (2kn+7/3,2kn+57/3), k € Z, we have = € (xg, 2km +57/3) and (u—1/v/3)(u+
1/V3), (uo — 1/v/3)(uo + 1/v/3) > 0.

So (u—1/v3)(u+1/v/3) and (uo — 1/v/3)(ug + 1/v/3) have the same sign. Then we have

u—1V3 _uo—1/V8 gy 1 e g —1/V3)/(uo +1/V3) +1
u+1/V3  wug+1/V3 V31— eV (ug —1/v/3)/(uo + 1/v/3)

where ug = tan(z/2). Note that when converting u back to x, we need to choose k carefully
as the number of period may change.

2.2.7

e Fix points and stability

Infinite fix points. The greatest one (the only positive one) is unstable. From high to low,
the fix points are alternatively unstable and stable.
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Figure 8: 2.2.7

e No analytical solution
2.2.11
We use the variation of constant method. First we have
Q =—-Q/RC — Q = Ae~!/FC
where A is a constant. Then we change A to a function of ¢, and we have
e /BCA=Vy/R —» A =V,Ce/ B 1 A,
where Ag is a constant. Therefore, the expression of @ is
Q = VoC + Age "/ HC

Note that at time ¢ = 0, we have Q(0) = 0. So Ay = —V,C and

Q = VoC (1 _ e—t/RC)

2.3 Population Growth
2.3.2

Note that k1, a,k_1 > 0. The fix points (and their stability) are = 0 (unstable) and = = kja/k_4
(stable).
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Figure 9: 2.3.2

When plotting x(t), remind that the concentration of a chemical species should be non-negative.
Therefore, it is wrong to choose a negative xg.
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