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2 Flows on the Line

2.1 A Geometric Way of Thinking

2.1.1

ẋ = sinx = 0 → x = kπ, k ∈ Z

Figure 1: 2.1.1

2.1.2

sinx = 1 → x = 2kπ +
π

2
, k ∈ Z

2.1.3

(a)

ẍ = (cosx)ẋ = cosx sinx =
1

2
sin(2x)

(b)
1

2
sin(2x) =

1

2
→ x = kπ +

π

4
, k ∈ Z
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2.1.4

Note that
sinx = 2 sin

x

2
cos

x

2

and
cosx = 2 cos2

x

2
− 1 = 1− 2 sin2

x

2

We have

cscx+ cotx =
1

sinx
+

cosx

sinx
=

2 cos2(x/2)

2 sin(x/2) cos(x/2)
= cot

x

2

Therefore

t = ln

∣∣∣∣cscx0 + cotx0

cscx+ cotx

∣∣∣∣ = ln

∣∣∣∣cot(x0/2)

cot(x/2)

∣∣∣∣ = ln

∣∣∣∣ tan(x/2)tan(x0/2)

∣∣∣∣
We then need to discuss the sign of the term tan(x/2)/ tan(x0/2).

• If x0 ∈ (2kπ, (2k + 1)π), k ∈ Z
It can be shown that ∀t > 0, x(t) ∈ (x0, (2k + 1)π). Therefore x0/2, x/2 ∈ (kπ, (k + 1/2)π)
and tan(x0/2), tan(x/2) > 0.

• If x0 ∈ ((2k − 1)π, 2kπ), k ∈ Z
It can be shown that ∀t > 0, x(t) ∈ ((2k − 1)π, x0). Therefore x0/2, x/2 ∈ ((k − 1/2)π, kπ)
and tan(x0/2), tan(x/2) < 0.

We then have tan(x/2)/ tan(x0/2) > 0. Hence,

tan
x

2
= et tan

x0

2

→x = 2 tan−1
(
et tan

x0

2

)
+ 2kπ, where x0 ∈ ((2k − 1)π, (2k + 1)π)

It is worthy noticing that when x0 = kπ, k ∈ Z, the system is already in the fix point. Therefore
x(t) = x0 = kπ.

Especially, when x0 = π/4, we have k = 0 and

tan
x0

2
=

1

cscx0 + cotx0
=

1√
2 + 1

Then,

x = 2 tan−1

(
et

1 +
√
2

)

2.2 Fixed Points and Stability

2.2.1

• Fix points and stability

x = −2, Stable; x = 2, Unstable.
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Figure 2: 2.2.1

• Analytical solution

dx

dt
= 4x2 − 16

dx

4x2 − 16
= dt

1

16

(
1

x− 2
− 1

x+ 2

)
dx = dt

d ln

∣∣∣∣x− 2

x+ 2

∣∣∣∣ = d(16t)

ln

∣∣∣∣x− 2

x+ 2

∣∣∣∣− ln

∣∣∣∣x0 − 2

x0 + 2

∣∣∣∣ = 16t

ln

∣∣∣∣x− 2

x+ 2

x0 + 2

x0 − 2

∣∣∣∣ = 16t

– If x0 > 2, we have x > 2 and (x− 2)/(x+ 2), (x0 − 2)/(x0 + 2) > 0;

– If −2 < x0 < 2, we have −2 < x < 2 and (x− 2)/(x+ 2), (x0 − 2)/(x0 + 2) < 0;

– If x0 < −2, we have x < −2 and (x− 2)/(x+ 2), (x0 − 2)/(x0 + 2) > 0.

Therefore, no matter what the initial value is, the term (x − 2)(x0 + 2)/(x + 2)(x0 − 2) is
positive. Therefore

x− 2

x+ 2

x0 + 2

x0 − 2
= e16t → x = 2

(
1 +

x0 − 2

x0 + 2
e16t

)/(
1− x0 − 2

x0 + 2
e16t

)
It is worth noticing that when x0 = −2, the system is in the fix point. Therefore x(t) = x0 =
−2, t > 0. From now on, we will ignore the cases where the initial state is the fix point.
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2.2.2

• Fix points and stability

x = −1, Unstable; x = 1, Stable.

Figure 3: 2.2.2

• Analytical solution

Note that the solutions of 1− x14 = 0 is x = einπ/7, n = 0, 1, . . . , 13. Therefore we have

dx

dt
= 1− x14

dx∏13
n=0(exp{inπ/7} − x)

= dt

13∑
n=0

An

exp{inπ/7} − x
dx = dt

−
13∑

n=0

And ln
∣∣∣x− e(inπ/7)

∣∣∣ = dt

− d

13∏
n=0

ln
∣∣∣x− e(inπ/7)

∣∣∣An

= dt

13∏
n=0

ln
∣∣∣x0 − e(inπ/7)

∣∣∣An

−
13∏

n=0

ln
∣∣∣x− e(inπ/7)

∣∣∣An

= t

where An are coefficients. The form is very complicated and it is not necessary to proceed.

2.2.3

• Fix points and stability
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x = −1, Stable; x = 0, Unstable; x = 1, Stable.

Figure 4: 2.2.3

• Analytical solution

dx

dt
= x− x3

dx

x− x3
= dt(

1

x
+

1

2

1

1− x
− 1

2

1

1 + x

)
dx = dt

d ln |x| − 1

2
d ln |x− 1| − 1

2
d ln |x+ 1| = dt

d ln
|x|√

|x2 − 1|
= dt

ln
|x|√

|x2 − 1|
− ln

|x0|√
|x2

0 − 1|
= t

|x|√
|x2 − 1|

=
|x0|√
|x2

0 − 1|
et

x2

|x2 − 1|
=

x2
0

|x2
0 − 1|

e2t

– If |x0| < 1, we have |x| < 1. In addition, x and x0 should have the same sign. So

x2

1− x2
=

x2
0

1− x2
0

e2t → x =

√
e2tx2

0/(1− x2
0)

1 + e2tx2
0/(1− x2

0)
sgnx0

– If |x0| > 1, we have |x| > 1. x and x0 should have the same sign, too. So

x2

x2 − 1
=

x2
0

x2
0 − 1

e2t → x =

√
e2tx2

0/(x
2
0 − 1)

e2tx2
0/(x

2
0 − 1)− 1

sgnx0
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2.2.4

• Fix points and stability

x = 2kπ, Unstable; x = (2k + 1)π, Stable. k ∈ Z

Figure 5: 2.2.4

• No analytical solution

2.2.5

• No fix points

Figure 6: 2.2.5

• Analytical solution
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Let u = tan(x/2), and we have x = 2arctanu+ 2kπ, k ∈ Z. Note that

1 +
1

2
cosx =

1

2
+ cos2

x

2
=

1

2
+

1

1 + u2

and

dx =
2

1 + u2
du

and we have

dx

dt
= 1 +

1

2
cosx

dx

1 + (1/2) cosx
= dt

1

1/2 + 1/(1 + u2)

2

1 + u2
du = dt

4du

u2 + 3
= dt

4√
3
d arctan

u√
3
= dt

4√
3

(
arctan

u√
3
− arctan

u0√
3

)
= t

u =
√
3 tan

(√
3

4
t+ arctan

u0√
3

)

where u0 = tan(x0/2). Note that when converting u back to x, we are not able to determine
the number of period (k) directly.

2.2.6

• Fix points and stability

x = 2kπ + π/3, Unstable; x = 2kπ − π/3, Stable. k ∈ Z
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Figure 7: 2.2.6

• Analytical solution

Similar to 2.2.5, define u = tan(x/2) and eventually we have

2

3u2 − 1
du = dt

1√
3
d ln

∣∣∣∣∣u− 1/
√
3

u+ 1/
√
3

∣∣∣∣∣ = dt∣∣∣∣∣u− 1/
√
3

u+ 1/
√
3

∣∣∣∣∣ =
∣∣∣∣∣u0 − 1/

√
3

u0 + 1/
√
3

∣∣∣∣∣ e√3t

– If x0 ∈ (2kπ − π/3, 2kπ + π/3), k ∈ Z, we have x ∈ (2kπ − π/3, x0) and (u− 1/
√
3)(u+

1/
√
3), (u0 − 1/

√
3)(u0 + 1/

√
3) < 0.

– If x0 ∈ (2kπ+π/3, 2kπ+5π/3), k ∈ Z, we have x ∈ (x0, 2kπ+5π/3) and (u−1/
√
3)(u+

1/
√
3), (u0 − 1/

√
3)(u0 + 1/

√
3) > 0.

So (u− 1/
√
3)(u+ 1/

√
3) and (u0 − 1/

√
3)(u0 + 1/

√
3) have the same sign. Then we have

u− 1/
√
3

u+ 1/
√
3
=

u0 − 1/
√
3

u0 + 1/
√
3
e
√
3t → u =

1√
3

e
√
3t(u0 − 1/

√
3)/(u0 + 1/

√
3) + 1

1− e
√
3t(u0 − 1/

√
3)/(u0 + 1/

√
3)

where u0 = tan(x0/2). Note that when converting u back to x, we need to choose k carefully
as the number of period may change.

2.2.7

• Fix points and stability

Infinite fix points. The greatest one (the only positive one) is unstable. From high to low,
the fix points are alternatively unstable and stable.

8



Figure 8: 2.2.7

• No analytical solution

2.2.11

We use the variation of constant method. First we have

Q̇ = −Q/RC → Q = Ae−t/RC

where A is a constant. Then we change A to a function of t, and we have

e−t/RCȦ = V0/R → A = V0Cet/RC +A0

where A0 is a constant. Therefore, the expression of Q is

Q = V0C +A0e
−t/RC

Note that at time t = 0, we have Q(0) = 0. So A0 = −V0C and

Q = V0C
(
1− e−t/RC

)
2.3 Population Growth

2.3.2

Note that k1, a, k−1 > 0. The fix points (and their stability) are x = 0 (unstable) and x = k1a/k−1

(stable).
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Figure 9: 2.3.2

When plotting x(t), remind that the concentration of a chemical species should be non-negative.
Therefore, it is wrong to choose a negative x0.

10


